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• MK, C. Klein-Bösing, F. König, J.P. Wessels
How robust is a thermal photon interpretation of the ALICE low-pT
data?
JHEP 1310 (2013) 119 [arXiv:1307.7034]

• M. Brandt, MK, F. König
Nuclear parton density modifications from low-mass lepton pair
production at the LHC
Nucl. Phys. A 927 (2014) 78 [arXiv:1401.6817]

• MK, F. König
New information on photon fragmentation functions
Eur. Phys. J. C 74 (2014) 3009 [arXiv:1403.2290]
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Theoretical setup Numerical results Conclusion

How robust is a thermal photon interpretation ...?
MK., C. Klein-Bösing, F. König, J.P. Wessels, JHEP 1310 (2013) 119
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New information on photon fragmentation functions
MK., F. König, Eur. Phys. J. C 74 (2014) 3009
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Recalculation of direct processes at NLO
MK, F. König, to be published.

Leading order:

• Tree-level processes: qq̄ → γg , qg → γq

• Also with color and spin correlations (needed for POWHEG)

• Traces with FormCalc 8.4, checked against literature and MG5

Virtual corrections:

• One-loop processes: qq̄ → γg , qg → γq

• Tensor reduction w/ Form, scalar functions w/ LoopTools 2.13

• Renormalization in MS, checked against MG5 aMC@NLO

Real corrections:

• Tree-level processes: qq̄ → γgg(qq̄), qg → γqg , gg → γqq̄

• Traces with FormCalc 8.4, checked against MG5

• Dipole subtraction, QCD checked against AutoDipole 1.2.3

• Integrated QED dipole reproduces fragmentation function

5 / 19



Theoretical setup Numerical results Conclusion

Recalculation of direct processes at NLO
MK, F. König, to be published.

Leading order:

• Tree-level processes: qq̄ → γg , qg → γq

• Also with color and spin correlations (needed for POWHEG)

• Traces with FormCalc 8.4, checked against literature and MG5

Virtual corrections:

• One-loop processes: qq̄ → γg , qg → γq

• Tensor reduction w/ Form, scalar functions w/ LoopTools 2.13

• Renormalization in MS, checked against MG5 aMC@NLO

Real corrections:

• Tree-level processes: qq̄ → γgg(qq̄), qg → γqg , gg → γqq̄

• Traces with FormCalc 8.4, checked against MG5

• Dipole subtraction, QCD checked against AutoDipole 1.2.3

• Integrated QED dipole reproduces fragmentation function

5 / 19



Theoretical setup Numerical results Conclusion

Recalculation of direct processes at NLO
MK, F. König, to be published.

Leading order:

• Tree-level processes: qq̄ → γg , qg → γq

• Also with color and spin correlations (needed for POWHEG)

• Traces with FormCalc 8.4, checked against literature and MG5

Virtual corrections:

• One-loop processes: qq̄ → γg , qg → γq

• Tensor reduction w/ Form, scalar functions w/ LoopTools 2.13

• Renormalization in MS, checked against MG5 aMC@NLO

Real corrections:

• Tree-level processes: qq̄ → γgg(qq̄), qg → γqg , gg → γqq̄

• Traces with FormCalc 8.4, checked against MG5

• Dipole subtraction, QCD checked against AutoDipole 1.2.3

• Integrated QED dipole reproduces fragmentation function
5 / 19



Theoretical setup Numerical results Conclusion

Reference calculation and choice of input parameters

NLO calculation: [P. Aurenche et al., Phys. Rev. D 73 (2006) 094007]

• JETPHOX

• Direct and fragmentation contributions

Renormalization and factorization scales:

• µ = µp = µγ = pγT
• Variations by relative factors of two, but not four

Parton densities in the proton: [H. Lai et al., Phys. Rev. D 82 (2010) 074024]

• CT10nlo

Photon fragmentation function: [L. Bourhis et al., Eur. Phys. J. C 2 (1998) 529]

• BFG set II
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The POWHEG method
P. Nason et al., JHEP 0411 (2004) 040; 0711 (2007) 070; 1101 (2011) 095

NLO calculations:
• Increase normalization, reduce scale dependence (µ, µp, µγ)
• Include only one additional parton, no hadronization

Parton shower Monte Carlos:
• Leading-order normalization, large scale dependence
• Many additional partons, different hadronization models

NLO+PS with POWHEG:
• Subtract overlap with FKS [Frixione, Kunszt, Signer., Nucl. Phys. B 467 (1996) 399]

• Generate hardest radiation first, only positive weights
• Match to any PS (PYTHIA, HERWIG, ...) with pT veto

Required ingredients:
• Color- and spin-correlated squared Born amplitudes
• Finite (UV-renormalized and IR-subtracted) loop amplitudes
• Real emission squared amplitudes
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Theoretical setup Numerical results Conclusion

Specific issues for photons
MK, F. König, to be published.

“Fragmentation” contribution: [S. Höche et al., Phys. Rev. D 81 (2010) 034026]

• QED parton shower (q → qγ), matched to NLO direct cont.

• Suppressed wrt. to QCD by α/αs , color factors, multiplicities

• Globally only 2% photons in total QCD+QED event samples

• Reweight QED radiation by C=50 (100), check independence

Renormalization and factorization scales:

• µ = µp = pγ,q,gT (from underlying Born process)

Parton densities in the proton: [H. Lai et al., Phys. Rev. D 82 (2010) 074024]

• CT10nlo

Symmetrization of parton splitting in the final state:

• doublefsr=1

• Reduces POWHEG cross section by 10%
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Photon fragmentation function in 2- and 3-jet events
S. Höche et al., Phys. Rev. D 81 (2010) 034026 (Fig. 1)
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Theoretical setup Numerical results Conclusion

Born suppression factor
P. Nason, C. Oleari, arXiv:1303.3922

Born-level event generation cut:
• pp → γ + X has coll. divergence at LO → impose pT > pmin

T
• Influences events at low pT → region of interest for thermal γ
• Not applicable for studies of QGP

Analytic Born suppression factor:

• Multiplies Born cross section
- POWHEG (pT ,peak = 10 GeV, power i = 3):

fsup. =

(
p2T

p2T + p2T ,peak

)i

- Approximation of Θ(pT − pmin
T ) (e.g. with pmin

T = 1 GeV):

fsup. =
1

π

[
arctan[(pT − pmin

T ) · 104] +
π

2

]
• Events then reweighted by 1/fsup., checked independence
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Experimental conditions
PHENIX Collaboration at RHIC

Center-of-mass energy:
√
spp = 200 GeV

Inclusive photons: [Phys. Rev. C 87 (2013) 054907 and D 86 (2012) 072008]

• L (Run 2006) = 4.0 and 8.0 pb−1

• pγT ∈ [1; 5] and [5; 25] GeV

• |ηγ | < 0.35

Isolated photons: [Phys. Rev. D 86 (2012) 072008]

• Ehad./Eγ ≤ 0.1

• R =
√

(∆η)2 + (∆φ)2 ≤ 0.5

Photons + jets: [Phys. Rev. C 80 (2009) 024908]

• L (Runs 2005 + 2006) = 3.0 + 10.7 pb−1

• Anti-kT cluster algorithm with R = 0.4
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Theoretical setup Numerical results Conclusion

Comparison of NLO and POWHEG with PHENIX data
MK, F. König, to be published.
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Theoretical setup Numerical results Conclusion

Fraction of isolated photons at NLO
PHENIX Coll., Phys. Rev. D 86 (2012) 072008 (Fig. 13)
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Theoretical setup Numerical results Conclusion

Fraction of isolated photons with POWHEG
MK, F. König, to be published.
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Theoretical setup Numerical results Conclusion

Transverse momentum balance of photons and jets
MK, F. König, to be published.

 (GeV)
jγ

T
p

0 5 10 15 20 25

)
­2

 (
p

b
 G

e
V

j
γ T

 d
p

j
γ T

y
 p

∆

σ
d

 
π

2
 1

­210

­110

1

10

210

310

410

510

610

POWHEG+PYTHIA

PYTHIA LO

CT10nlo

| < 0.35
γ

η|

 = 200 GeVs + X at γ →p p 

Individual cuts on pγT > 1 GeV and pjT > 1 GeV

At pγjT → 0 NLO diverges, PYTHIA/POWHEG have finite turnover

PYTHIA underestimates absolute cross section in particular at low pT 15 / 19



Theoretical setup Numerical results Conclusion

Azimuthal correlation of photons and jets
MK, F. König, to be published.
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At ∆φ→ {0, π} NLO diverges, PYTHIA/POWHEG have finite turnover

PYTHIA has no “fragmentation” and wrong normalization (not shown)
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Contributions of isolated and “fragmentation” photons
MK, F. König, to be published.
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“Fragmentation” processes mostly collinear (∆φ ' 0, but also π)
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Conclusion
Motivation:

• Prompt photons are an important probe of the QGP

• Photon-jet correlations important for jet quenching

Calculation:

• Recalculation of direct photon production at NLO

• POWHEG implementation: QED PS, Born suppression

• Experimental conditions: PHENIX at RHIC

Results:

• Improved agreement with pT spectrum of inclusive photons

• First correct description of isolated photon fraction

• Reliable prediction for photon-jet pT -balance

• First correct description of photon-jet azimuthal correlation

• Decomposition into isolated and “fragmentation” photons

18 / 19
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Outlook

What remains to be done:

• Application to pA and AA collisions

• Study cold nuclear effects with nPDFs

• Implement medium effects (energy loss, hydrodynamics, ...)

19 / 19
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